
ON INJECTIONS AND SURJECTIONS OF CON- 
TINUOUS FUNCTION SPACES 

BY 

D. AMIR AND B. ARBEL 

ABSTRACT 

It is shown that a linear isometry of C(S) into C(T) is generated by a linear 
extension from S to a quotient space of T. A dual theorem is proved for a 
quotient map of C(S) onto C(T). An application of the first theorem and a 
modification of a theorem by Banach and Mazur provide a negative answer to a 
problem posed by Pelczynski. 

1. Introduction 

I f  S is a compac t  Hausdor f f  space, C(S) denotes the Banach space o f  all con- 

t inuous real-valued functions on S with the s u p r e m u m  norm.  l s  denotes the 

constant  funct ion 1 on S. A linear u : C(S) --* C(T) (S, T compac t  Hausdorf f )  is 

called regular i f  N u II = 1 and uls= 1 T - - t h i s  is equivalent  to uls= l r  and u > 0 .  

I f  n: T ~  S is continuous,  then n ~ defined by (n~ = f(nt) is a regular  

l inear (even multiplicative) opera to r  f rom C(S) to C(T). I f  n maps  T onto S, 

then n ~ is a regular isometric  embedding o f  C(S) into C(T). I f  n is a h o m e o m -  

orphic  embedding o f  T into S, then the restriction m a p  n ~ maps  C(S) onto 

C(T) and [Ig [I = min (l[f[[ ; f'~ C(S),n~ = g} for  every g ~ C(T). 
The wel l -known Banach-Stone theorem ([6],  p. 442) states tha t  the mos t  

general  linear isometry o f  C(S) onto C(T) is o f  the fo rm (~bf)(0 = a(O(h~ 
where a e C(T) satisfies I a(t) I = 1 for  all t ~ T and h is a h o m e o m o r p h i s m  o f  T 

onto S. I f  ~b is regular,  then obviously a(t) = 1 and ~b = h ~ Holsztynski  ([9] cf. 

also Pelczynski [11] and T o m a i e k  [15]) obta ined:  I f  ~b is a l inear isometry f rom 

C(S) to C(T), then S is a quot ient  qZ of  a subspace Z o f  T, and there is 7 E C(Z) 

with 1~ l = 1 and such that  (q~f) (z) = y(z) (qOf) (z) for  all z ~ Z, f ~ C(S). Unlike 
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the Banach-Stone condition, Holsztynski's condition is not sufficient: T=flN,  

S = Z = flNIN, q = the identity and ? -= 1 satisfy the conditions, but C(flNIN) 

is not even isomorphic to a subspace of  C(flN) (Proposition 5). 

Besides the isometric embeddings no: C ( S ) ~  C(T) which arise when S is a 

quotient space roT of  T, there are also isometric embeddings u: C ( S ) ~  C(T) 

which arise when S is homeomorphic to a subspace S of  T-- these are the norm- 

preserving linear extensions, i.e. those u satisfying i~ = identity of  C(S). 

Norm-preserving linear extensions always exist if S is metrizable [10] but may 

fail to exist in the general case (e.g. the case mentioned above: T = ~N, 

S = /~N \N). An improvement of Holsztynski's theorem, Theorem 1, shows that 

C(S) is isometric to a subspace of  C(T) if, and only if, there is a norm-preserving 

linear extension v: C(S) ~ C(Y), where Y = nT is a quotient space of  T, and that 

every regular isometric embedding of  C(S) into C(T) is of  the form nOv. The 

improvement is by showing the existence of  a norm-preserving linear extension 

from the subspace q~ of C(Z) into C(T). 

A corollary of  Theorem 1 and a natural modification of  a classical result of  

Banach and Mazur enable us to answer in the negative a problem posed by 

Pelczynski [12]. 

In Sec. 3 we treat the dual problem--charac ter ize  all linear mappings ~ of  

C(S) onto C(T) which, like the restrictions n o in the case when re: T ~ S is a 

homeomorphism, satisfy Ilg][ = m i n ( [ l f ] l ; f ~ c ( s ) , r f  = g}. If  n : T - - , S  

is an onto map, the same condition is satisfied by norm-1 projections of  C(S) 

onto C(T), i.e. v: C(S) ~ C(T) satisfy vn ~ = the identity on C(T). The general 

case is obtained by a combination of  both. 

2. Linear isometries from C(S) to C(T) 

Theorem 1 is an improvement of Holsztynski's theorem. The first part of the 

proof  is essentially Holsztynski's proof  and we repeat it for completeness sake. 

THEOREM 1. I f  alp: C(S )~  C(T) is a linear isometry, then there are a con- 

tinuous mapping n from 7' onto some Y, a homeomorphic embedding j: S ~ Y, 

a norm-preserving linear extension v from C(S) to C(Y), and ~ ~n~ with 

[~,(rc-l.jS)l = 1 such that 7c~ = nov. I f  ~b is regular one can take v regular 

and v = l r .  

PROOF. Define, for s ~ S : P ( s ) =  { f ~ C ( S ) ;  [lfll = 1, f ( t ) =  1 in a neigh- 

borhood of  s}, a(s) = ~ {M(q~f); f ~ P(s)} where M(g ) = {t, lg(t) l = 11 g I]). 
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We show first that  a ~ ~ :  I f  f i , . . . , fneP(s ) ,  then 1 = 1 / n ~ i ~  1 Ilf/![ 
n n ( 

> i! 1In ~:,: , f ,  ll => l l / "  Z::,f,,s)l = J, hence II 1in z,"=, Cf, II = i and  f o r  some 
toeT: Illn z;=,  CfVo)l  = 1. Since I CL(to)l--< I1 ~i, I1--Ii/,11-- 1, this implies 
that I~f,(,0)l = 1 for i =  1 , . . . ,n ,  i.e. toe  (']7= M(4bJ7 ). Thus, the family 

{M(~ f i ) ; f eP( s ) )  has the finite intersection property,  and by c o m p a c t n e s s -  a 

non empty intersection. 

I f  sl @ s2, take disjoint closed neighborhoods V1, V 2, and f e C(S) satisfying 

f (Vi )  = 1 ->f->__ 0 = f ( V 2 ) .  Then f c V ( s i )  , 1 - f , - -P(s2) .  For  t e a s  i we have 

[4'f(t)  l = I q~l(t) l = 1, while for  t e as 2 we must  have I q~l(t) - q~f(t)[ = 1. 

Since these requirements are incompatible (in the real case), asj n asz = ~ .  

We show now that aK is closed for every closed K c S: Let {t,} be a net in 

aK,  with t~-~ t. I f  t, e as~, s~ e K we can take, by compactness o f  K,  a convergent 

subnet s e ~ s e K ,  l f  t C a K ,  then t e a s  and there is a ne ighborhood V o f  

as = ~ {m(q~f); f eP(s)} (which is closed by definition) with t~ ~7. By com- 

pactness, V contains a finite intersection ["]i"=iM(q~J), where f i eP(s ) .  By the 

definition of  P(s), there are open neighborhoods Wi of  s with .fi(t) = 1 for t e W i . 

Let W = ("/~=.~ W~. W is an open neighborhood of' s, hence there is tic such that 

for  all fl > tic : sB ~ W, so that W is a ne ighborhood o f  sp and Ji ~ P(sp) for  each i. 

Since tncasp, tpsY,(qbfi) tbr each i and therefore tee  V for all /7 > rio- Thus 

t = l iT  tne 12, which contradicts the choice o f  V. 

In particular,  Z = aS is a closed subset o f  T and the mapping a - I  f rom Z 

onto  S is continuous,  hence S is homeomorphic  to the quotient  space Z/D, where 

D is the decomposi t ion o f  Z into the sets as. 

Given a n y f ~  C(S) with ii j l i  = 1 = f ( s ) , f c a n  be uniformly approximated by ele- 

ments of  P(s), so that for s u c h / a n d  any t e as we have [q$/'(t)l = lime(~h-~S l q~ h(t)[ 

= 1, i.e. t ~ M(dpf). I q~l~ [ = 1 on Z (since ls  e P(s) for  all s ~ S), hence replacing 

q~ by ~ = 7~b where ~, ~ C(T) satisfies 171 < 1, 7(t) = q~l(t) on Z, we get a linear 

~: C ( S ) ~  C(T) which is still an isometry ( [ 0 p f ) ( t ) l  = [7(t)[[(of(t)[ < 1[ q~f[[ 

< Ilfl!, while if  [!fl[ = 1 then IJ(s)[ = 1 tbr  some s e S  and for t e a s  we have 

t~s/(t)] = Iv(t)] l+s(t)l = I ~ / ( 0 i  =1) ,  ~sl s = 1 on z ,  and for every f e C ( S )  

with 0 =<f_5_ 1 = f ( s )  we have ( ipf)( t)  = 1 for  t mas ( i f  @ f ) ( t )  = - 1 ,  then 

~ s ( 1 - J ) ( t )  = 2 which is impossible). By homogeneity,  if  f eC(S)  satisfies 

0 <f<=J(s ) ,  then ( ~ s f ) ( a s ) = f ( s ) .  I f  f eC(S)  and f_>_ 0 = f ( s ) ,  then 

I ls l l  - = l lst l  - S ) ( a s )  - -  ( I l s l !  - S ) ( s )  = I ls l l ,  h e n c e  - -  0 

= f(s) .  
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I f  0 < f ~  C(S) and s is any point in S, let g = min(f ,  f(s)), then by the above 

(~g) (as) = g(s) = f(s),  while ~,(f - g) (as) = 0 = ( f  - g) (s). So that (t~f) (as) 

= (t~g)(as) + t p ( f -  g)(as) = f(s). I f  f ~  C(S), s ~ S are any, let g = max(f ,0) .  

Then f (s)  = g(s) - (g - f ) ( s )  = ~g(as) - tl/(g - f ) ( a s )  = tpf(trs). Therefore we 

have i~ = (tr- 1)0 (where i: Z ~ T is the embedding). 

Let b be the trivial extension of  D to a decomposition of  T, i.e. b consists of  the 

sets as (s ~ S) and the singletons {t} (t ~ T/Z).  Since D is closed in aS • aS, it is 

closed in T x T ,  and so is b .  Let Y=TID,  re- - the  quotient map. Yis compact, 

and j(s) = n{as} defines a natural homeomorphic embedding of  S into Y. 

Since for every fEC(S) ,  ~ f  is constant on the decomposition sets, (v f ) (y)  

= ( ~ f ) ( n - l y )  is a well defined linear map from C(S) into C(Y) with norm < 1. 

(vf)( js)  = (t~f)(nljs) = (~f) (as)  = f(s),  i.e. v is a norm-preserving linear ex- 

tension for j .  

In conclusion we have ~(t)c~(t) = ( t ~ f ) ( t ) =  ( ~ f ) ( n - l r c t ) =  (vf)(nt)  

(u~ (t), i.e. ~t k = nov. 

If ~bl = 1, we can take ~ = l r ,  i.e. i// = ~b, and get (vls)(y) = l~ (n - ly )  = 1. 

Q.E.D. 

COROLLARY 2. I f  S is Stonian (i.e., an extremally disconnected compact) and 

C(S) is isometric to a subspace of C(T), then S is homeomorphic to a subspace 

Z of T admitting a linear extension of norm 1. I f  the isometry is regular, so is 

the extension. 

PROOf. Let v,j, re, Y be as in Theorem 1. Since S is projective [8], there is a 

homeomorphic embedding h: S ~ T with j = n~ nov is a linear extension for h 

(h~176 = j~ = idc(s)). Finally, if  ~ l s  = l r ,  n~ = 1r.  Q.E.D. 

Pelczynski asked ([12] problem 17): Suppose i: S ~  T is a homeomorphic 

embedding, with T 0-dimensional, which admits a regular linear extension u. 

Is it a retract of  T? The answer is in the negative - -  let S be the Yo~ida-Hewitt 

space [16], i.e. the maximal ideal space of L ~176 [0, 1] in its Gelfand topology, and 

T = fiN. Then C ( S ) =  L~176 1] = L 1 [0, 1]* is regularly isometric to a sub- 

space of  m = C(T), as will be seen soon. By the former corollary there is a homeo- 

morphism i: S ~ f in  which admits a regular linear extension. On the other 

hand, iS cannot be a retract of  fiN, since S is not separable. 

To establish the regular embedding of C(S) in C(T), we apply a simple modi- 

fication of  the classical result of  Banach and Mazur [2]. 

THEOREM 3. I f  X is a separable (AL)-space ([5], p. 100), then there is a 
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linear bounded positive operator T f rom I x onto X such that X is naturally 

isometric to ll / T -  ~O. 

PROOF. Let (x,) be a dense sequence in the positive cone P = {x 6 X;  x > 0}, 

y. = x . /Hx.I  [ (one may assume x. # 0). For ~ e l  l, define T~= T(Y~ct.e.) 

= X ~.y. - -  this last series converges absolutely, and [I T. II = II Z ~ . y .  IL <-- Z l~. I 

= II ~ II. Given x ~ P , e  > 0, choose X.o ~ G(x.) with II x - X.o II < ~, x. l  ~ (x.) with 

[I x., II < e  and II x -  X .o -  x.1 II < e/2, x.2 e (x . )w i th  II x -  X .o -  x . , -  x.: ][ < e/4 

etc. Then x = T~ where a = ~]i=~ II x., tl e., satisfies [I c~ II < I[ x II + 3~ 

Given any x ~ X ,  e > 0 there are, by the above, a+, ~_ >_ 0 in l 1 such that 

T~+ = x+, T a_ = x_,  tl ~+ It < II x+ II + ~' II r162 < II x_ It + ~. Then or = ~+ - a_ 

satisfies T. = x, I[ ~ I[ > I[ Ta II > II ~ II - 2~ 
Q.E.D. 

COROLLARY 4. I f  X is a separable (AL)-space, then there is a linear positive 

isometry f rom X* into m which carries 1 to 1. 

PROOF. Let T: l ~ ~ X  be as above. T*: X* ~ m  is a linear isometry. Since 

1 e X *  is defined by l(x) = I[ x+ [I - II x_ II, (T*l)(cO = l ( Z ~ )  = ll(z~)+ II 
- l l ( r ~ ) -  II = II z~+  II - II Z~_ II = II Z~,>o cqyi l[ - II ~1~,<o cqy, 11 = ~ , > o  cq + 

~i=,<o cq = ~,a i = l(e). Q.E.D. 

REMARKS. 1) The necessity of  the existence of  an extension operator is 

demonstrated by: 

PROPOSITION 5. If S c fiN and C(S) is isomorphic to a subspace of C(flN), 

then S is Stonian. In particular, C(f lN\N) is not isomorphic to a subspace of  

C(#W). 

PROOF. Following Rosenthal [13], S is said to satisfy the countable chain 

condition (CCC) if every disjoint family of  non empty open sets in S is at most 

countable. By [13, p. 229], S satisfies the CCC if and only if C(S) contains no 

isomorph of  co(F) for uncountable F. Since fiN satisfies the CCC, if C(S) is iso- 

morphic to a subspace of C(flN) then S too satisfies the CCC. If S c fiN then S 

is an F-space. By [14] p. 19, every F-space satisfying the CCC is Stonian. 

Q.E.D. 

2) If  C ( S ) c  C(T), Theorem 1 establishes the existence of  the following 

diagram: 
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qo C(S) 

I I: 
C(S) ' 

u (E.O} 
IL 

Z ~" "~T 

(E,O) 
Fig. 1 

C{T} 

1 .fro 
c(Y) 

where u, v are norm-1 linear extensions. The diagram would have looked prettier 

if we could replace q~ by C(Z). The following simple example shows that 

a linear extension u : C(Z) -o C(T) may fail to exist if Z is the Holsztynski space 

constructed in the proof  of  theorem 1" T = fiN, S = {s}, ((oe)(n) = c(1 - (l/n)), 

(~be) (p) = c for p ~ fiN \N. One easily checks that Z in this case is fiN IN, which 

admits no linear extension to fiN. 

PROPeSITION 6. Suppose C(S) is isometric to a subspace of C(T). Then in 

each of the following cases there are a subspace Z of T admitting a norm-1 

linear extension and a quotient map of Z onto S: 

a) T is metrizable, b) S is Stonian. c) T is Stonian. 

PROOF. a) Is immediate from Theorem 1 and the fact that in a metric 

compact T every closed subspace admits a norm-1 linear extension [10]. 

b) Is immediate from Corollary 2. 

c) Follows from b) and the following result of  H. B. Cohen [4]: For  every 

Banach space B there are a Stonian space SB and a linear isometry un : B --* C(SB) 

such that, given a linear isometry v: B ~  X (X an arbitrary Banach space), any 

linear w: C(S~)~  X satisfying wuB = v is an isometry. I f  B = C(S) and S is 

Stonian, then this implies that $8 must be homeomorphic to S. I f  B = C(S), 

S any, then Sa turns out to be the Gleason space of  S [8]. 

In our case, let B = C(S) and v: B ---, C(T) the given isometry. Then vu~ I is a 

linear isometry from unC(S) to C(T). Since T is Stonian, C(T) has the extension 

property ([5], p. 94) and vuy ~ can be extended to a norm-1 w: C($8)~  c ( r ) .  

By the characterizing property of  SB, w is an isometry. By b) there are a subspace 

Z of  T admitting a norm-1 linear extension and a quotient map of  Z onto SB. 

Combined with the Gleason quotient map of SB onto S [8], we get a quotient 

map of  Z onto S. Q.E.D. 
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Important generalizations of the class of  metrizable compacts are the class of  

dyadic s p a c e s -  the continuous images of  generalized Cantor sets 2" (2 stands 

for the two-point space, m for an infinite cardinal) and the class of  Dugundji 

spaces [12] - - t h o s e  compact spaces S which admit a regular norm-1 extension 

in every embedding. The following proposition relates two open problems con- 

cerning these classes and the problem of extending Proposition 6. 

PROPOSITION 7. At least one of the followin 9 is true: 

a) There is a nondyadic Dugundji space (cf. [12], problem 14). 

b) There are no dyadic T and nondyadic compact S with C(S) c C(T). 

c) There exists a (nondyadic) compact S with C(S) ~ C(2") such that S is 

not a quotient space of any subspace of 2" admitting a norm-1 extension. 

PROOF. Suppose C(S) ~ C(T), T -= ~z(2"), S nondyadic. Then C(S) ~ c(2m), 

SO we can assume T = 2". If  S = qZ, then Z is nondyadic. It remains to show 

that if Z is a subspace of  2" admitting a norm-1 linear extension u: C(Z)~C(2") 

then Z is Dugundji. This will follow from [12, p. 35] if we show that there is a 

regular extension for some embedding of  Z in 2". I f  m < N O then Z is metrizable 

so that this follows from Michael's theorem. If  m > No, then W = {tE2";  

ulz(t) = 1}, as a closed G~-subset of  2", is homeomorphic with 2" [7]. 

3) Another generalization of  the Banach-Stone theorem was given in [1] 

and [3]: If  there is an isomorphism q~ of C(S) onto C(T) and H q~ [I [I ~ b-1 II < 2, 

then S is homeomorphic to T. It is not known whether one can replace 2 by 3. 

Using the technique of  [1], one can show that if there is an isomorphism ~b of  

C(S) into C(T) with II q~ [] [I q~-l II < 2, then S is a quotient space of  a subspace 

of  T. Questions which arise naturally are: a) If ~b: C(S) ~ C(T) is an isomorphism 

into, do there exist a quotient Y of T and a linear extension from C(S) to C(Y)? 

Suppose [I q~ I111  -'11 < 3, or even II II II q~-lll < 27 b) i f  q~: C(S)~  C(T) is an 

isomorphism into with II 1111  -111 < 3 (or even: 11 I[ II  -Xll < 2), is C(S) 

isometric to a subspace of  C(T)? 

3. Quotient maps of C(S) onto C(T). 

THEOREM 8. I f  Z: C(S) -o C(T) is an exact quotient map (i.e. II g II -- min{ l [ f [ ]  ; 

f ~  C(S), zf =g} for all g ~ C(T)), then there are a subspace Z of S, a quotient 

map q of Z onto T, a norm-1 projection w of C(Z) onto C(T) and e ~ C(S) such 

that z(ef) = wi~ for every f e C(S), where i is the embedding of Z in S. I f  z is 

regular, one can take e = 1, w regular. 
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PROOF. Choose eeC(S)  such that  Ilel] = 1 and ze = 1. Denote  S ' =  ( s e S ;  

l e(s) I -- 1}. I f  f E  c(s)  vanishes in a ne ighborhood  o f  S '  then we have II1 § II 
< II e + 2f I[ = 1 for  small I,~ I, which cannot  hold in all directions unless zf  = 0. 

Suppose now f vanishes on S ' ,  then, given any e > 0, f agrees with a funct ion f '  

o f  n o r m  < e  in a ne ighborhood  o f  S ' ,  and by the above  1I zfll = [1 z f '  + z ( f - f ' ) I [  

= II z f '  II < e, and z f  = 0 for  every f ~ C ( S )  vanishing on S', i.e. z = z'i '~ 

where i '  is the embedding o f  S' in S, and z '  is an exact quot ient  m a p  o f  C(S') 

onto C(T). O(h) = z'(e'h), where e '  = i'~ is a regular exact quotient  map  o f  

C(S') onto C(T) - -  in part icular  0 is positive. Define, for  t ~ T : 

p(t) = A {s~-S'; h(s) = 1}, 
OheP(t) 
IIhH =1 

where P(t) is defined as in the p r o o f  o f  Theorem 1. We show first that  pt ~ ~ :  

I f  Oh~ ~ P(t) and [Ih,][ = 1 (i = 1, ..., n) then, since 1/n ~%1 Oh~ (t) = 1, there  

is some s ~ S '  with n-i~.~=lhi(s) = 1, i . e .h . ( s )  = 1 for  i = l , - . . , n .  This shows 

tha t  the intersected family has the finite intersection proper ty  and, by compact -  

ness, has a non void intersection. 

I f  t 1 r t 2, take gEP( t i )  with - # E P ( t 2 ) .  Suppose s e p t  i r 3 p t  2 and take 

h ~ C(S') with li h II = 1, g = ~kh. Then h(s) = 1 since ~,h ~ P( t l )  and s ~ ptt,  and 

h(s) = -  1 since ~ ( - h ) e P ( t 2 ) a n d  s~_pt 2. This is impossible,  so tha t  

ptj ~ pt2 = ~ for  ti ~ t2. 

I f  K is a closed subset o f  T, then pK is closed in S ' :  Suppose PG ~ s, ~ s, 

t~eK.  We may  assume t ~ t E K .  Let  h EC(S'),  IIhlI = 1, ~hEP(t) .  Then  

Oh ~ P(t,) hence h(s~) = 1 for  c~ > ~0 and h(s) = 1, i.e. s ~ pt. Thus  q = p -  1 is 

cont inuous,  and T is the quot ient  space o f  the compac t  Z = pT. 

We show now that  0h  is determined by the values o f  h on Z. I f  s E S \Z and 

t e T, there is some ht~ C(S') with t)ht ~ P(t), II h, [] -- 1 and h,(s) < 1. Replacing 

ht by (hi)+ we may  assume also that  ht > 0. I f  Vt is a ne ighborhood  o f  t on which 

~'ht = 1, take a finite cover  for  T : Vt~ , ' " ,  lit,, and let h = max  {h, ; i = 1, . . . ,  n}. 

Then II h II = 1 while 0h  > max  tPht, = 1, i.e. 0h  = 1 while h(s) < 1. 
For  a compac t  K in S '  \Z we take, for  each s e K,  such h~ ~ C(S') with h~ > 0, 

II h~ll = 1, Oh~ = 1 and h~(s) < 1 - e~ (e~ > 0). Let  W~ = { r c S ' ;  h~(r) < 1 - e~}. 

Choose a finite cover  for  K :  W~,,... ,  W~,, and let hr  = max {h~, ; i = 1,.. . ,  m}. 

Then hr ~ C(S'), II hkl[ = 1, hr > O, Oh k = I while hie(K) < 1 - eK where 0 < eK = 

min{e~, ;  i = l , . - . , m } .  Define now H r = e ~  1 m i n ( 1 - h ~ , e r ) .  Then  H r e  

C(S'), 0 < Hr  < 1, HK(K) = 1 while 0 H r  = 0. 
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Given h~C(S') ,  0 < h < 1 and h(Z) = 0, take K = { seS ' ;h ( s )  > 1/2) and 

let h '  = m a x ( h -  21-HK,0) .  Then ~h '  > ~ , ( h - 2 - 1 H K ) =  tkh, while 

0 < h'  < 1/2. We have succeeded to halve the norm of  h without affecting ~h. 

A successive application of  this procedure shows that ~kh = 0. This shows that 

~k = wi "~ where i" is the embedding o f  Z in S ' .  Thus, for f ~C(S ) :  

z(ef) = z'(i'~ = z'((i'~176 = z ' ( e ' ,  i ~  ~b(i~ w(i"~176 

w((i'i")~ = w(i~ where i = i'i" is the embedding of  Z in S. 

It  remains to prove that w is a projection, i.e. wq~ = g for all g ~ C(T). For 

a compact K in T and a neighborhood U of  K, let grv E C(T) satisfy 0 < gro < 1, 

gKt~ = 1 on a neighborhood of  K, gxu = 0 on a neighborhood of  T \U. Let 

hru~C(Z ) satisfy I[hKvl[ = 1, hrv > O, WhKu = gKV. Then hxv = 1 on pK 

and hro = 0 on p(T\U).  Define, for g e C ( T ) ,  Ilgll -- i and every n: 

i , i - 1 n), 
A~ = {t;g(t) > ~-) ,  B, = {t;g(t) > - - ~ - }  (i = 1,..., 

I f  

1 
h7 ha, B,, hn = Z n _ _  h i  . 

n 

n i=1 

then 

J > g(t) > j - 1 
n n 

1 ~ gA~a?(t)--g(t)[  lJn 1 1 1 I(wh.-g)(t)l = I n  = - + - -  vAT"Y(t)- g(t)l-<--n 
i=I  n 

and 

h~(pt) - g(t) l = I j - 1 + hT(pt) - g(t) I ~ ~ .  l(h.- q~ = I ,= ~ -- 

Therefore h, ~ qOg uniformly on Z while wh, ~ g uniformly on S, which shows 

that g = wq~ Q.E.D. 

COROLLARY 9. I f  Z: C(S) -~ C(T) is an exact quotient map and T is Stonian, 

then T is homeomorphic to a subspace of S. 

PROOF. Immediate f rom Theorem 8 and the projectivity of  Stonian spaces. 

REMARK. A quotient map -r of  C(S) onto C(T) need not be exact. Take any 

infinite compact  S, let T = {t}, zf( t)  = qS(f) where q5 ~ C(S)* does not attain 

its supremum on the unit ball. One may ask: Suppose C(T) is a quotient space 

of  C(S), is it also an exact quotient space? 
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