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ABSTRACT

It is shown that a linear isometry of C(S) into C(T) is generated by a linear
extension from § to a quotient space of T. A dual theorem is proved for a
quotient map of C(S) onto C(T). An application of the first theorem and a
modification of a theorem by Banach and Mazur provide a negative answer to a
problem posed by Pelczynski.

1. Introduction

If S is a compact Hausdorff space, C(S) denotes the Banach space of all con-
tinuous real-valued functions on S with the supremum norm. lg denotes the
constant function 1 on S. A linear u: C(S) —» C(T) (S, T compact Hausdorff) is
called regular if | u| =1 and ulg= 1;—this is equivalent to ulg=1; and u20.
If n: T— S is continuous, then 7° defined by (z°f)(f) = f(nt) is a regular
linear (even multiplicative) operator from C(S) to C(T). If # maps T onto S,
then n° is a regular isometric embedding of C(S) into C(T). If = is a homeom-
orphic embedding of T into S, then the restriction map n° maps C(S) onto
C(T) and ”g “ = min { “f( ; f€C(S),n°f = g} for every g e C(T).

The well-known Banach-Stone theorem ([6], p. 442) states that the most
general linear isometry of C(S) onto C(T) is of the form (¢f)(¥) = a(t)(h°N)(®),
where a ¢ C(T') satisfies Ia(t)] = 1for all te T and h is a homeomorphism of T
onto S. If ¢ is regular, then obviously o(f) = 1 and ¢ = h°. Holsztynski ([9] cf.
also Pelczynski [11] and Tomasek [15]) obtained: If ¢ is a linear isometry from
C(S) to C(T), then S is a quotient gZ of a subspace Z of T, and there is y € C(Z)
with |y| = 1 and such that (¢.£)(z) = %(2)(¢°f)(z) for all zeZ, f € C(S). Unlike
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the Banach-Stone condition, Holsztynski’s condition is not sufficient: T =N,
S = Z = N\N, q = theidentity and y = 1 satisfy the conditions, but C(AN\N)
is not even isomorphic to a subspace of C(8N) (Proposition 5).

Besides the isometric embeddings n®: C(S)— C(T) which arise when S is a
quotient space =T of T, there are also isometric embeddings u: C(S) - C(T)
which arise when S is homeomorphic to a subspace S of T—these are the norm-
preserving linear extensions, i.e. those u satisfying % = identity of C(S).
Norm-preserving linear extensions always exist if S is metrizable [10] but may
fail to exist in the general case (e.g. the case mentioned above: T = SN,
S = BN\N). An improvement of Holsztynski’s theorem, Theorem 1, shows that
C(S) is isometric to a subspace of C(T) if, and only if, there is a norm-preserving
linear extension v: C(S) - C(Y), where Y = nT is a quotient space of T, and that
every regular isometric embedding of C(S) into C(T) is of the form n°v. The
improvement is by showing the existence of a norm-preserving linear extension
from the subspace q°C(S) of C(Z) into C(T).

A corollary of Theorem 1 and a natural modification of a classical result of
Banach and Mazur enable us to answer in the negative a problem posed by
Pelczynski [12].

In Sec. 3 we treat the dual problem — characterize all linear mappings t of
C(S) onto C(T) which, like the restrictions n° in the case when n: T — S is a
homeomorphism, satisfy “ g “ = min { Hf 5 feCS),tf = g} f m:T>S
is an onto map, the same condition is satisfied by norm-1 projections of C(S)
onto C(T), i.e. v: C(S)— C(T) satisfy vr® = the identity on C(T). The general
case is obtained by a combination of both.

2. Linear isometries from C(S) to C(T)

Theorem 1 is an improvement of Holsztynski’s theorem. The first part of the

proof is essentially Holsztynski’s proof and we repeat it for completeness sake.

THeoreM 1. If ¢: C(S) - C(T) is a linear isometry, then there are a con-
tinuous mapping w from T onto some Y, a homeomorphic embedding j: S - Y,
a norm-preserving linear extension v from C(S) to C(Y), and yer°C(Y) with
|7(r~1jS)| = 1 such that y¢ = n°. If ¢ is regular one can take v regular
andy = 1y.

Proor. Define, for seS: P(s) = {f € C(S); [f“ =1, f(1) =1 in a neigh-
borhood of s}, a(s) = N{M(¢f); f € P(s)} where M(g) = {t; |g(t)| = | g]|}.
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We show first that o # &: If fy,~,f,€P(s), then 1 = 1/n X |f]
> [UYn20_ifi| 2 |Yn Ty fis)] = 1, hence || 1/n L, bf; | = 1 and for some
toe T |1/n El=y ¢fito)| = 1. Since | @f(1o)| £ | 4] = |Ifi] = 1, this implies
that |@fite)| =1 for i=1,--,n, ie. toe(Nj- M(¢f). Thus, the family
{M(@f);fe P(s)} has the finite intersection property, and by compactness — a
non empty intersection.

If s; # s,, take disjoint closed neighborhoods Vy, V,, and f < C(S) satisfying
fV)=1=2fz0=f(V,). Then feP(s,), 1 -f=P(s,). For teas, we have
|¢f(0)] = l¢1(f)| = 1, while for tegs, we must have |pl(t) — ¢f(1)| = 1.
Since these requirements are incompatible (in the real case), as; Nas, = .

We show now that oK is closed for every closed K < S: Let {#,} be a net in
oK, with t, —»t. 1f t, € o5, 5, € K we can take, by compactness of K, a convergent
subnet s;—»>se K. If t¢0K, then t¢os and there is a neighborhood V of
os = N {M(¢f); f€P(s)} (which is closed by definition) with ¢¢ /. By com-
pactness, V' contains a finite intersection (1,2, M(¢f,), where f,e P(s). By the
definition of P(s), there are open neighborhoods W; of s with fi(t) = 1fort e W,,
Let W = (\;.., W,. W is an open neighborhood of s, hence there is f8, such that
for all B> By : sge W, so that W is a neighborhood of sg and f; € P(s;) for each i.
Since tyeasy, t,€ M(Pf;) tor each i and therefore 1€V for all f> f,. Thus
t = lim#;e ¥, which contradicts the choice of V.

In particular, Z = ¢S is a closed subset of T and the mapping ¢~ ! from Z
onto S is continuous, hence S is homeomorphic to the quotient space Z/D, where
D is the decomposition of Z into the sets os.

Given any fe C(S) with [1 i }[ = 1 = f(5), f can be uniformly approximated by ele-
ments of P(s), so that for such f and any teas we have |§f (1)| = limp - | ¢ h(t)|
=1,1e. teM(@f). |dp1;| = 1 on Z (since 15& P(s) for all se S), hence replacing
¢ by ¥ = y¢ where y e C(T) satisfies |y| < 1, y(r) = ¢1(r) on Z, we get a lincar
¥: C(S)— C(T) which is still an isometry (|(Wf)(1)] = [y®||df()| < | ¢S]
< |f|, while if ||f|| =1 then |f(s)| = 1 for some seS and for teos we have
lvf! = ly(t)] lgl)f(t)] = |¢f(]| =1), Y15 =1 on Z, and for every fe C(S)
with 0 £ f <1 = f(s) we have (ff)(t) = 1 for teos (if (Yf)(1) = —1, then
(1 —f)(t) = 2 which is impossible). By homogeneity, if feC(S) satisfies
0=f=f(s), then (Yf)(os)=f(s). If feC(S) and f= 0 =f(s), then
I/ = Wh)es) = y(|f| = H)ies) = (J£] = NHis) = | ]|, hence ¥f)(os) =0
= f(s).
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If 0 < feC(S) and s is any pointin S, let g = min(f, f(s)), then by the above
(¥g)(as) = g(s) = f(s), while Y(f — g)(os) = 0 = (f — g)(s). So that (yf)(os)
= (Yg)(os) + ¥(f — g)(os) = f(s5). If feC(S), seS are any, let g = max(f,0).
Then f(s) = g(s) ~ (g — 1) (5) = Yg(os) — Y(g — f)(os) = Y f(os). Therefore we
have i% = (¢71)° (where i: Z - T is the embedding).

Let D be the trivial extension of D to a decomposition of T, i.e. D consists of the
sets as (s € S) and the singletons {t} (t € T \Z). Since D is closed in oS x ¢S, it is
closed in TxT, and so is D. Let Y=T\D, n—the quotient map. Y is compact,
and j(s) = n{os} defines a natural homeomorphic embedding of S into Y.

Since for every fe C(S), ¥f is constant on the decomposition sets, (vf)(y)
= (Y f)(z"y) is a well defined linear map from C(S) into C(Y) with norm < 1.
@ Us) = WNH(r'js)= (Y f)(os) = f(s), ie.vis a norm-preserving linear ex-
tension for j.

In conclusion we have y(®)p() = WHE = WHE 7)) = Wf)(xt)
7% f) (1), i.e. yp = 7.

If ¢1 = 1, we can take y = 1, i.e. ¥ = ¢, and get (v1)(y) = 1z~ 'y) = L.

Q.E.D.

COROLLARY 2. If S is Stonian (i.e., an extremally disconnected compact) and
C(S) is isometric to a subspace of C(T), then S is homeomorphic to a subspace
Z of T admitting a linear extension of norm 1. If the isometry is regular, so is

the extension.

ProorF. Let v,j,m, Y be as in Theorem 1. Since S is projective [8], there is a
homeomorphic embedding h: S — T with j = 7°h. n° is a linear extension for h
(ho(nov) = joU = idc(s)) Finally, lf ¢ls = ].T, Tcovls = 1T' Q.E.D.

Pelczynski asked ([12] problem 17): Suppose i:S— T is a homeomorphic
embedding, with T 0-dimensional, which admits a regular linear extension u.
Is it a retract of T? The answer is in the negative — let S be the YoSida-Hewitt
space [16], i.e. the maximal ideal space of L* [0, 1] in its Gelfand topology, and
T = BN. Then C(S) = L°[0,1] = L'[0,1]* is regularly isometric to a sub-
space of m = C(T), as will be seen soon. By the former corollary there is a homeo-
morphism i: S - BN which admits a regular linear extension. On the other
hand, iS cannot be a retract of SN, since S is not separable.

To establish the regular embedding of C(S) in C(T), we apply a simple modi-
fication of the classical result of Banach and Mazur [2].

THEOREM 3. If X is a separable (AL)-space ([5], p. 100), then there is a
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linear bounded positive operator T from I' onto X such that X is naturally
isometric to I'/T~10.

ProOF. Let (x,) be a dense sequence in the positive cone P = {xe X; x = 0},
Yo =%,/|x,| (one may assume x, # 0). For ael', define T, = T(Za,e,)
< Zfa|

= || o H . Given x e P, ¢ > 0, choose x, € G(x,) with “ X = X, H < ¢, X, €(x,) with

= Xu,y, — this last series converges absolutely, and “ T, “ = ” Yoy,

“ Xny ” < ¢ and “ X = Xpg — Xn, H < 8/2, Xu, E('xn) with H X = Xng = Xny 7T Xy n < 8/4
etc. Then x = To where a = X,_% | x,, | e,, satisfies Jel <[] +3e.

Given any xe X, ¢ > 0 there are, by the above, a,, o_ = 0 in /* such that
T, = %o T = x| < e o o] <
af 2 | Taf > ] - 2e.

[x_ “ +¢& Theno = a, —a_
satisfies T, = x, |

Q.E.D.

COROLLARY 4. If X is a separable (AL)-space, then there is a linear positive
isometry from X* into m which carries 1 to 1.

ProoF. Let T:1!— X be as above. T*: X* > m is a linear isometry. Since
leX* is defined by 1(x) = |x.|—|x-|, (T*D() = 1(Ta) = |(Te), |
=@ = [ Tar | = | Ta | = | Zesotri| = | Zaco @ || = Zamoou +
Te<ot = 2o =1(x).

Q.E.D.

RemMARKs. 1) The necessity of the existence of an extension operator is
demonstrated by:

ProrosiTioN 5. If S « BN and C(S) is isomorphic to a subspace of C(BN),
then S is Stonian. In particular, C(BN\N) is not isomorphic to a subspace of

C(BN).

Proor. Following Rosenthal [13], S is said to satisfy the countable chain
condition (CCC) if every disjoint family of non empty open sets in S is at most
countable. By [13, p. 229], S satisfies the CCC if and only if C(S) contains no
isomorph of ¢y(I') for uncountable I'. Since SN satisfies the CCC, if C(S) is iso-
morphic to a subspace of C(SN) then S too satisfies the CCC. If S < BN then S
is an F-space. By [l4] p. 19, every F-space satisfying the CCC is Stonian.

Q.E.D.

2) If C(S)< C(T), Theorem 1 establishes the existence of the following
diagram:
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¢ Cis) u (£0) cm

c(s) civ)

{E.0)
Fig. 1

where u, v are norm-1 linear extensions. The diagram would have looked prettier
if we could replace q°C(S) by C(Z). The following simple example shows that
a linear extension u: C{(Z) —» C(T) may fail to exist if Z is the Holsztynski space
constructed in the proof of theorem 1: T = N, S = {s}, (¢c)(n) = c(1 — (1/n}),
(¢c)(p) = ¢ for pe BN\N. One easily checks that Z in this case is SN \N, which
admits no linear extension to SN,

PrROPCSITION 6. Suppose C(S) is isometric to a subspace of C(T). Then in
each of the following cases there are a subspace Z of T admitting a norm-1
linear extension and a quotient map of Z onto S:

a) T is metrizable. b) S is Stonian. ¢) T is Stonian.

ProoF. a) Is immediate from Theorem 1 and the fact that in a metric
compact T every closed subspace admits a norm-1 linear extension [10].

b) Is immediate from Corollary 2.

¢) Follows from b) and the following result of H. B. Cohen [4]: For every
Banach space B there are a Stonian space Sy and a linear isometry ug : B — C(Sp)
such that, given a linear isometry v: B— X (X an arbitrary Banach space), any
linear w: C(Sp) — X satisfying wuy = v is an isometry. If B = C(S) and § is
Stonian, then this implies that S; must be homeomorphic to S. If B = C(S),
S any, then Sy turns out to be the Gleason space of S [8].

In our case, let B = C(S) and v: B — C(T) the given isometry. Then vuy ' is a
linear isometry from uxC(S) to C(T). Since T is Stonian, C(T') has the extension
property ([S], p. 94) and vu 5! can be extended to a norm-1 w: C(Sg) —» C(T).
By the characterizing property of Sz, w is an isometry. By b) there are a subspace
Z of T admitting a norm-1 linear extension and a quotient map of Z onto Sp.
Combined with the Gleason quotient map of Sz onto S [8], we get a quotient

map of Z onto S. Q.E.D.
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Important generalizations of the class of metrizable compacts are the class of
dyadic spaces — the continuous images of generalized Cantor sets 2™ (2 stands
for the two-point space, m for an infinite cardinal) and the class of Dugundji
spaces [12] — those compact spaces S which admit a regular norm-1 extension
in every embedding. The following proposition relates two open problems con-
cerning these classes and the problem of extending Proposition 6.

PROPOSITION 7. At least one of the following is true:

a) There is a nondyadic Dugundji space (cf. [12], problem 14),

b) There are no dyadic T and nondyadic compact S with C(S) = C(T).

c) There exists a (nondyadic) compact S with C(S) = CQ2™) such that S is
not a quotient space of any subspace of 2" admitting a norm-1 extension.

Proor. Suppose C(S) = C(T), T = n(2™), S nondyadic. Then C(S) = C(2™),
so we can assume T = 2" If S = ¢gZ, then Z is nondyadic. It remains to show
that if Z is a subspace of 2™ admitting a norm-1 linear extension u: C(Z) »C(2™)
then Z is Dugundji. This will follow from [12, p. 35] if we show that there is a
regular extension for some embedding of Z in 2™. If m <N, then Z is metrizable
so that this follows from Michael’s theorem. If m > N,, then W = {te2™;
ul,(t) = 1}, as a closed G;-subset of 2", is homeomorphic with 2™ [7].

3) Another generalization of the Banach-Stone theorem was given in [1]
and [3]: If there is an isomorphism ¢ of C(S) onto C(T) and ” olle | <2
then S is homeomorphic to T. It is not known whether one can replace 2 by 3.
Using the technique of [1], one can show that if there is an isomorphism ¢ of
C(S) into C(T) with || ¢ /[|¢ "] <2, then S is a quotient space of a subspace
of T. Questions which arise naturally are: a) If ¢: C(S) —» C(T) is an isomorphism
into, do there exist a quotient Y of T and a linear extension from C(S) to C(Y)?
Suppose | ¢ | | ¢~*| <3, oreven ||¢] o™ <22 b) If ¢: C(S) > C(T) is an
isomorphism into with “ qb” H ¢! “ <3 (or even: “ qS][ ][ ot “ <2), is C(S)
isometric to a subspace of C(T)?

3. Quotient maps of C(S) onto C(T".

THeEOREM 8. If1: C(S)— C(T)is an exact quotient map (i.e. ” g ” = min{"f”;
feC(S), tf =g} for all ge C(T)), then there are a subspace Z of S, a quotient
map q of Z onto T, a norm-1 projection w of C(Z) onto C(T) and e C(S) such
that t(ef) = wi’f for every fe C(S), where i is the embedding of Z in S. If 7 is

regular, one can take e = 1, w regular.



308 D. AMIR AND B. ARBE! Israel J. Math.,

Proor. Choose e C(S) such that “ e ” =1 and 7e = 1. Denote S’ = {seS;
|e(s)| = 1}. If fe C(S) vanishes in a neighborhood of S” then we have || 1 + Acf ||
< e+ | =1 for small | %], which cannot hold in all directions unless tf = 0.
Suppose now f vanishes on S’, then, given any ¢ > 0, f agrees with a function f’
of norm < & in a neighborhood of §’, and by the above H Tf n = “ o +1{f—f) H
= “ Tf" <e, and tf = 0 for every feC(S) vanishing on S’, ie. 7= 1"i’°
where i’ is the embedding of S’ in S, and 7’ is an exact quotient map of C(S’)
onto C(T). Y(h) = t'(e'h), where e’ = i'%, is a regular exact quotient map of
C(S’) onto C(T) — in particular ¥ is positive. Define, for te T:

p) = N {5€S’5h(s) =1},

YheP(t)
lall=1

where P(1) is defined as in the proof of Theorem 1. We show first that pt # J:
If Y, € P(t) and ||k =1 (i =1,--,n) then, since 1/n X/_, Yh, (1) =1, there
is some se S’ with n=1X"_ h(s) = 1, i.e. h(s) = 1 for i =1,---,n. This shows
that the intersected family has the finite intersection property and, by compact-
ness, has a non void intersection.

If t, # t,, take geP(t) with — geP(t,). Suppose sept; Npt, and take
he C(S") with H h H =1, g = Yh. Then h(s) = 1 since yhe P(t;) and sept,, and
h(s) = — 1 since Y(— h)eP(t,) and sept,. This is impossible, so that
pty Npty = Flort # t,.

If K is a closed subset of T, then pK is closed in S’: Suppose pt, 3 s,— 8,
t,e K. We may assume f,—tcK. Let heC(S"), H h ﬂ =1, YheP(t). Then
Whe P(t,) hence h(s,) = 1 for o > a, and h(s) = 1, i.e. sepr. Thus g = p~' is
continuous, and T is the quotient space of the compact Z = pT.

We show now that yh is determined by the values of h on Z. If se S\Z and
te T, there is some h e C(S’) with yh,e P(¢), || h,| = 1 and h(s) < L. Replacing
h, by (h,), we may assume also that b, = 0. If ¥, is a neighborhood of ¢ on which
yh, = 1, take a finite cover for T: ¥, , -, ¥, ,and let h = max{h, ;i = 1,---,n}.
Then H h H = 1 while yh = maxyh,, = 1, i.e. yh = 1 while h(s) < 1.

For a compact K in S'\Z we take, for each se K, such h,e C(S’) with h, = 0,
| b | = 1, ¥hy = 1 and hys) <1— ¢ (e,>0). Let W, = {reS’; h(r) <1—e}.
Choose a finite cover for K: W, ,--, W, , and let hy = max{h,; i =1,---,m}.
Then hge C(S"), | | = 1, hx 2 0,y = 1 while hy(K) <1 — ex where 0 < g =
min {g;, ; i =1,--,m}. Define now Hyg=e' min(l — hg, &). Then Hye
C(8),0 £ Hy £ 1, H(K) = 1 while yHg = 0.
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Given he C(S"),0 < h £ 1 and Z) = 0, take K = {seS’; h(s) = 1/2} and
let B’ = max(h — 2'~Hg,0). Then yh' = y(h— 2-'H,) = yh, while
0 £ k' £ 1/2. We have succeeded to halve the norm of h without affecting y/h.
A successive application of this procedure shows that yh = 0. This shows that
¥ = wi’®, where i” is the embedding of Z in S’. Thus, for feC(S):
wef) = (%) = T(EC)E) = T - i) = Yi%f) = w(i"i'f) =
w((i"iN°f) = w(i°f), where i = i'i" is the embedding of Z in S.

It remains to prove that w is a projection, i.e. wg°g = g for all g e C(T). For
a compact K in T and a neighborhood U of K, let gy € C(T) satisfy 0 < ggy = 1,
gxy = 1 on a neighborhood of K, gxy = 0 on a neighborhood of T\U. Let
hyy € C(Z) satisfy H hgu || =1, hgy 2 0, whgy = ggp. Then hgy =1 on pK
and hgy = 0 on p(T \U). Define, for g e C(T), “g || = 1 and every n:

48 = {5 g(i)>—} B'={t; g(t)>——-}(l—1 > 1),

n _ n n = _1_ .
hi = hgrgn, by = " i=21 h
If
% 2900 2 j;l ,
then
1 2 j—1 1 1
| (wh, — O] = ‘"‘}; 51 gA’l'B’i'(t)_g(t)l = IJT‘+ 794;3;’0)' g(t)l = "
and
0 1 . n ]"‘1 1 n 1
|(h, — a°9) (p)| = ]7 ‘=E Hi(pt) — g(0)| = | + B -9 = —.

Therefore h,~ q°g uniformly on Z while wh, — g uniformly on S, which shows
that g = wq®g. Q.E.D.

COROLLARY 9. If 1: C(S) > C(T)is an exact quotient map and T is Stonian,
then T is homeomorphic to a subspace of S.

ProoF. Immediate from Theorem 8 and the projectivity of Stonian spaces.

REMARK. A quotient map 7 of C(S) onto C(T) need not be exact. Take any
infinite compact S, let T = {t}, ©f(t) = ¢(f) where ¢ e C(S)* does not attain
its supremum on the unit ball. One may ask: Suppose C(T) is a quotient space
of C(8), is it also an exact quotient space?
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